Exploiting term co-occurrence for enhancing automated image annotation
http://data.open.ac.uk/oro/23514
is a Article , Academic article

Outgoing links

Property Object
Date 2009
Is part of
Status Peer reviewed
URI
  • http://data.open.ac.uk/oro/document/11093
  • http://data.open.ac.uk/oro/document/18057
  • http://data.open.ac.uk/oro/document/24967
  • http://data.open.ac.uk/oro/document/6108
Volume 5706
Abstract This paper describes an application of statistical co-occurrence techniques that built on top of a probabilistic image annotation framework is able to increase the precision of an image annotation system. We observe that probabilistic image analysis by itself is not enough to describe the rich semantics of an image. Our hypothesis is that more accurate annotations can be produced by introducing additional knowledge in the form of statistical co-occurrence of terms. This is provided by the context of images that otherwise independent keyword generation would miss. We applied our algorithm to the dataset provided by ImageCLEF 2008 for the Visual Concept Detection Task (VCDT). Our algorithm not only obtained better results but also it appeared in the top quartile of all methods submitted in ImageCLEF 2008.
Authors authors
Type
Label Llorente, Ainhoa ; Overell, Simon; Liu, Haiming ; Hu, Rui ; Rae, Adam ; Zhu, Jianhan ; Song, Dawei and Rüger, Stefan (2009). Exploiting term co-occurrence for enhancing automated image annotation. In: Evaluating Systems for Multilingual and Multimodal Information Access, Springer, Germany, pp. 632–639.
Same as 978-3-642-04447-2_79
Title Exploiting term co-occurrence for enhancing automated image annotation
Creator
Dataset Open Research Online
Publisher Springer
At Evaluating Systems for Multilingual and Multimodal Information Access, 9th Workshop of the Cross-Language Evaluation Forum